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Abstract

Some generalizations of the usual operations of catenation and quo-

tient of languages are introduced and studied. In particular, language

equations involving these operations are considered. Infinite hierarchies

of classes of prefix codes and classes of equivalence relations are defined

and investigated in connection respectively with the classical notions of

prefix codes and right syntactic congruences.

1 Introduction

The catenation and quotient are basic operations in formal language theory.
A natural generalization of the catenation uw of the word w to u is obtained
if we allow w to be inserted in an arbitrary position in u, instead of its right
extremity. This and several other variants of insertion and deletion, together
with related topics have recently been studied in [3], [4] [6].

Note that, eventhough insertion generalizes catenation, catenation cannot
be obtained as a particular case of insertion. This happens because we can-
not force the insertion to take place at the end of the word. The operation
defined and studied in this paper provides the control needed to overcome this
phenomenon. K-catenation is thus more nondeterministic than catenation, but
more restrictive than insertion. When k-catenating w to u we obtain words
u1wu2, where the length of u2 is at most k. Remark that now, 0-catenation is
exactly the classical catenation.

The paper is organized in the following way. Section 2 studies closure prop-
erties of the families of Chomsky hierarchy under k-catenation, and language
equations involving the k-catenation operation. The k-quotient and k-deletion
are introduced as operations inverse to k-catenation, needed in solving these
equations.

∗This research was supported by Grant OGP0007877 of the Natural Sciences and Engi-

neering Research Council of Canada
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The classical notions of right syntactic congruences and prefix codes in formal
languages are related to catenation. Using k-catenation instead of catenation,
these notions can be generalized in a natural way. Section 3 and 4 study some
of these generalizations, called respectively right k-syntactic congruences and
k-prefix codes.

In the following, Σ will denote a finite alphabet and Σ∗ the monoid generated
by it under the operation of catenation. For a word u ∈ Σ∗, |u| denotes its
length, and λ stands for the empty word. REG, CF and CS will denote the
families of regular, context-free and context-sensitive languages respectively.
For further undefined notions in formal language theory and theory of codes the
reader is referred to [8], [7], respectively [1], [9].

2 Language equations and closure properties

Definition 1 Let u, v be words over the alphabet Σ. The k-catenation of v into
u is defined by u[k]v = {u1vu2| u = u1u2, |u2| ≤ k}.

The usual operation of catenation is the 0-catenation. Clearly, u[k]v ⊆
u[k+1]v. For k > 0, the k- catenation is not associative and not commmutative.

If u ← v is the sequential insertion of v into u (see [5] for details), then
u← v =

⋃

k≥0 u[k]v.

Proposition 1 The families REG, CF, CS are closed under k-catenation.

Proof. Let Σ be an alphabet and # be a letter which does not occur in Σ.
Consider the λ-free gsm g = (Σ, Σ ∪ {#}, {s0, s}, s0, {s}, P ), where

P = {s0a−→as0| a ∈ Σ} ∪ {s0a−→a#s| a ∈ Σ}∪
{sa−→as| a ∈ Σ} ∪ {s0a−→#as| a ∈ Σ}.

Intuitively, the gsm g works as follows: given a nonempty word u as an input,
g leaves its letters unchanged, but inserts a marker # in an arbitrary position
in u. It is easy to see that for any language L ⊆ Σ+ we have

L[k]{#} = g(L) ∩ Σ∗{#}({λ} ∪ Σ ∪ Σ2 ∪ . . . ∪ Σk)

Let now L1, L2 ⊆ Σ∗ be two languages belonging to REG, CF or CS. Con-
sider the λ-free substitution s : (Σ ∪ {#}∗)−→2Σ∗

defined by s(#) = L2 − {λ},
s(a) = a, ∀a ∈ Σ. The following relations hold:

L1[k]L2 = s(L1[k]{#}) if λ 6∈ L1 ∪ L2,
s(L1[k]{#}) ∪ L1 if λ ∈ L2 − L1,
s(L1[k]{#}) ∪ L2 if λ ∈ L1 − L2,
s(L1[k]{#}) ∪ L1 ∪ L2 if λ ∈ L1 ∩ L2.

As the families REG, CF, CS are closed under λ-free substitutions, λ-free
gsm and union, they are closed under k- catenation.

2



Consider now equations of the type X [k]L = ℜ, where L,ℜ are given lan-
guages. We recall the following known result (see, for example, [4]):

Proposition 2 Let L,ℜ be languages over an alphabet Σ and ⋄, 2 be two binary
word (language) operations, left-inverses to each other. If the equation X⋄L = ℜ
has a solution X ⊆ Σ∗ then the language ℜ′ = (ℜc

2L)c is a maximal solution.

Recall that the operation 2 is said to be the left-inverse of the operation ⋄
if, for all words u, v, w over Σ, we have: w ∈ (u ⋄ v)iff u ∈ (w2v) (see [4]). The
relation ”is the left-inverse of” is symmetric.

In order to find solutions to our equation, we need to find the left-inverse of
the k-catenation.

Definition 2 For two words u, v ∈ Σ∗ the k-quotient of v from u is

u �k v = {u1u2| u = u1vu2, |u2| ≤ k}.

For k = 0 we obtain the usual left quotient. Note that the k-quotient is the
left-inverse of k- catenation.

Proposition 3 If ℜ is a regular language and L an arbitrary one, then ℜ�k L
is regular.

Proof. Let L,ℜ be languages over Σ and let A = (S, Σ, s0, F, P ) be a finite
automaton that accepts ℜ. For two states s, s′ ∈ S denote:

Ls,s′ = {w ∈ Σ∗| sw=⇒∗s′ in A}.

The languages Ls,s′ are regular. Consider the automaton:

A′ = (S, Σ ∪ {#}, s0, F, P ′), P ′ = P ∪ {s#−→s′| s, s′ ∈ S and L ∩ Ls,s′ 6= ∅},

where # is a letter which does not occur in Σ.
Then we have ℜ�k L = h(L(A′) ∩ (Σ∗# ∪Σ∗#Σ . . . ∪Σ∗#Σk)), where h is

the morphism which erases the marker #. The proposition now follows as REG
is closed under intersection with regular languages and morphisms.

As a consequence of the preceding Proposition, REG is closed under k- quotient.
Moreover, the language ℜ�k L can be effectively constructed if ℜ is regular

and L is regular or context-free. Indeed, in this case, the emptiness of the
intersection occurring in the definition of P ′ is decidable. Consequently, the
automaton A′ can be effectively constructed.

The fact that the automaton A is finite implies that there are finitely many
possibilities of constructing A′. This leads to the conclusion that, for a given
regular language, there are finitely many distinct languages that can be obtained
from it by k- quotient.
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Proposition 4 The problem ”Does there exist a solution X to the equation
X [k]L = ℜ?” is decidable for regular languages ℜ and L.

Proof. Let L,ℜ be languages over the alphabet Σ and consider ℜ′ = (ℜc
�k L)c.

The language ℜ′ is regular and can be effectively constructed. As the k-quotient
is the left-inverse of k-catenation, if a solution to the equation exists, then ℜ′ is
a maximal solution (see Proposition 2).

The algorithm for deciding our problem will consist of constructing ℜ′ and
deciding whether or not ℜ′[k]L equals ℜ. The last problem is decidable as REG
is closed under k-catenation, the closure is effective (see Proposition 1), and the
equivalence problem is decidable for regular languages.

Corollary 1 Let ℜ be a regular language. There exists a finite number n ≥ 1
of distinct regular languages ℜ′′

i , 1 ≤ i ≤ n, such that for any language L the
following statements are equivalent:

(i) There exists a solution X to the equation X [k]L = ℜ.
(ii) There exists an index i, 1 ≤ i ≤ n, such that ℜ′′

i [k]L = ℜ.
Moreover, the regular languages ℜ′′

i can be effectively constructed.

The problem ”Does there exist a solution X to the equation X [k]L = ℜ?” is
undecidable for regular languages ℜ and context-free languages L. This follows
as the same problem is undecidable for catenation (see, for example [3]) and
catenation is a particular case of k-catenation.

For the sake of completeness, we investigate the closure properties of CF and
CS under k-catenation.

If the language to be deleted is a regular one, the k-catenation can be sim-
ulated by a generalized sequential machine with erasing.

Proposition 5 If L and ℜ are languages over Σ, ℜ a regular one, there exists
a gsm g (with erasing) such that L �k ℜ = g(L) ∪ {λ| λ ∈ L ∩ ℜ}.

Proof. Let A = (S, Σ, s0, F, P ) be a finite deterministic automaton which rec-
ognizes ℜ. Construct g = (Σ, Σ, S′, s′0, F

′, P ′) where

S′ = S∪ {s′0} ∪ {si| 1 ≤ i ≤ k + 1},
P ′ = P∪ {s′0−→as′0| a ∈ Σ} ∪ {s′0a−→s| s0a−→s ∈ P}

∪ {sa−→s1| sa−→s′ ∈ P, s′ ∈ F}
∪ {sia−→asi+1| 1 ≤ i ≤ k} ∪ {s′0a−→as1| a ∈ Σ, λ ∈ ℜ}.

F ′ = {si| 1 ≤ i ≤ k + 1},

Given a word u ∈ L as an input, the gsm g works as follows. The rules of
the form s′0a−→as′0 leave unchanged a prefix of u. The rule s′0a−→s switches
the derivation to P . By using rules of P , we erase a subword v of u.

A final state can be reached only through the application of one of the rules
sa−→s1 or s′0a−→as1. The use of the first one implies that a final state of P
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has been reached, that is, the erased word v belongs to ℜ. The use of the second
one implies that the empty word λ (which belongs to ℜ) has been erased from
u.

Finally, the rules of the type sia−→asi+1 leave unchanged a suffix of u. The
fact that we have only k + 1 terminal states assures us that the length of this
suffix is at most k, therefore g(u) will belong to u �k v. In case v is not a
subword of u, a final state cannot be reached.

From the above considerations, it is easy to see that the gsm g satisfies the
requested equality.

As CF is closed under gsm mapping and under union, it immediately follows
that CF is closed under k-quotient with regular languages.

As they are not closed under right quotient, CF and CS are not closed under
k-quotient either.

3 K-deletion and right k-syntactic congruences

In order to study the solutions to the symmetric equation L[k]Y = ℜ, we will
make use of a result analogous to Proposition 2, namely (see [4]):

Proposition 6 Let L,ℜ be languages over an alphabet Σ and ⋄, 2 be two binary
word (language) operations right-inverses to each other. If the equation L ⋄Y =
ℜ has a solution Y , then the language ℜ′ = (L2ℜc)c is a maximal solution.

Recall that the operation 2 is said to be the right-inverse of the operation ⋄ if
for all words u, v, w over the alphabet Σ, we have: w ∈ (u ⋄ v)iff v ∈ (u2w) (see
[4]). The relation ”is the right-inverse of” is symmetric.

If ⋄ is a binary word operation, the word operation ⋄r defined by u⋄rw = w⋄u
is called reversed ⋄.

Definition 3 Let u, v be words in Σ∗. The k-deletion of v from u is defined by:

u⊖k v = {w ∈ Σ∗| u = v1wv2, v = v1v2, |v2| ≤ k}.

If u ⇀↽ v is the dipolar deletion (see [3]) of v from u then:

u ⇀↽ v =
⋃

k≥0

(u⊖k v).

The operation of reversed k-deletion is the right inverse of the k-catenation.
Indeed, w ∈ u[k]v iff w = u1vu2, u = u1u2, |u2| ≤ k iff v ∈ w ⊖k u iff v ∈
u(⊖k)rw. Consequently, we can use the k-deletion to solve equations of the
form L[k]Y = ℜ. In order to study the decidability of the existence of solutions
to the equation L[k]Y = ℜ, we need to investigate the closure properties of
REG, CF, CS under k- deletion.
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Proposition 7 Let L, ℜ be two languages over Σ. If ℜ is a regular language
then ℜ⊖k L is regular (regardless of the complexity of L).

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the language
ℜ, in which all states are useful. (A state is useful if there exists a path con-
taining it which starts from the initial state and ends in a final state.) For any
two states s, s′ ∈ S, consider the language Ls,s′ defined in Proposition 3. Then
we have that

ℜ⊖k L =
⋃

(s1,s2)∈S′

Ls1,s2
, where

S′ = {(s1, s2) ∈ S×S| ∃sf ∈ F : Ls0,s1
(Ls2,sf

∩({λ}∪Σ∪Σ2∪. . .∪Σk))∩L 6= ∅}.

The proposition now follows as S is finite and therefore ℜ will be a finite union
of regular languages.

From the above construction it follows that ℜ ⊖k L can be effectively con-
structed if ℜ is a regular language and L is a regular or context-free language.
Indeed, in this case, the operation of intersection used in the definition of S′ is
effective.

Proposition 8 The problem ”Does there exist a solution Y to the equation
L[k]Y = ℜ?” is decidable for regular languages L and ℜ.

Proof. Analogous to that of Proposition 4 and using Proposition 6 and 7 to-
gether with the remarks following it.

As a consequence of the preceding proposition, a result similar to Corollary
1 can also be obtained here.

The fact that the automaton A from Proposition 7 is finite implies that, given
k, for any regular ℜ there exist finitely many languages that can be obtained
from ℜ by k-deletion. By using a similar argument we deduce that, for a given
regular ℜ, there are finitely many languages that can be obtained from ℜ by
k-deletion (regardless of k).

Proposition 9 The binary relation Rk(L) defined by ”u ≡ v (Rk(L)) if and
only if L⊖k u = L⊖k v” is an equivalence relation.

Proof. Immediate.

The right syntactic congruence RL associated with the language L is the
equivalence relation R0(L). For this reason, the equivalence relation Rk(L) will
be called the right k-syntactic congruence of L, even if Rk(L) is not generally
right compatible.

Since Rk+1(L) ⊆ Rk(L), then:

· · · ⊆ Rk+1(L) ⊆ Rk(L) ⊆ · · · ⊆ R1(L) ⊆ R0(L) = RL
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Since the intersection of equivalence relations is an equivalence relation, R∞ =
⋂

k≥0 Rk(L) is also an equivalence relation.
As we have seen in Proposition 7, for a given regular language L there exist

finitely many languages that can be obtained from it by k-deletion. Conse-
quently, in this case, for any k, the relation Rk(L) is of finite index. Moreover,
R∞ will be a finite intersection and therefore also of finite index. (The index of

R∞ is at most 2card(S×S) where S is the set of states in a minimal automaton
which recognizes L.) Hence:

Proposition 10 Let L be a regular language. Then there exists a positive in-
teger m such that R∞ =

⋂

i≥0 Ri(L) = Rm+n(L) = Rm(L) i.e. all the right
syntactic congruences Ri(L) and R∞ have the same finite index for i ≥ m.

If the language L is not regular, this is no more the case as it will be shown
by Example 1. We give first the following definitions.

Definition 4 The right k-residue of L is the language defined as Wk(L) = {u ∈
Σ∗|L⊖k u = ∅}.

If k = 0, then W0(L) is the usual right residue of L. If not empty, Wk(L) is a
right k-ideal and a class of Rk(L).

Clearly · · · ⊆Wk(L) ⊆Wk−1(L) ⊆ · · · ⊆W1(L) ⊆W0(L).
If the intersection W∞(L) =

⋂

k≥0 Wk(L) 6= ∅, then u1u2 ∈ W∞(L), x ∈ Σ∗

imply u1xu2 ∈W∞(L) and by [10], W∞(L) is regular.
Example 1.If Σ = {a, b} and L = {anbn|n ≥ 1}, then it is easy to see

that all the right k-residues Wk(L) are different, because Wk+1(L) ⊂Wk(L). It
follows then that all the equivalences Rk(L) are different and we have the strict
hierarchy

· · · ⊂ Rk+1(L) ⊂ Rk(L) ⊂ · · · ⊂ R1(L) ⊂ R0(L) = RL.

We will end this section by investigating the closure of CF and CS under
k-deletion. From the fact that CS is not closed under right quotient with reg-
ular languages it follows that CS is not closed under k-deletion with regular
languages.

On the other hand, CF and CS are closed under ⊖k with singleton words.
Indeed, if L is a language and w is a word over Σ we have:

L⊖k w =

w=w1w2,|w2|≤k
⋃

w1,w2

(w−1
1 L)w−1

2 ,

and both CF and CS are closed under right and left derivative and under union.

Proposition 11 If L,ℜ are languages over X, ℜ a regular one, there exists a
gsm g with erasing such that:

L⊖k ℜ = g(L) ∪ {λ| λ ∈ L ∩ ℜ}.
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Proof. Let A = (S, Σ, sA, F, P ) be a finite automaton that recognizes ℜ. Con-
struct the gsm g = (Σ, Σ, S′, {sA}, F ′, P ′), where

S′ = S ∪{si| s ∈ S, 1 ≤ i ≤ k + 1}
P ′ = P ∪{sa−→as| a ∈ Σ, s ∈ S} ∪ {sa−→s′1| sa−→s′ ∈ P}

∪{sia−→s′i+1| sa−→s′ ∈ P, 1 ≤ i ≤ k}
∪{sa−→ask+1| a ∈ Σ, s ∈ S}

F ′ = {si| s ∈ F, 1 ≤ i ≤ k + 1}

For each state s ∈ S, we have constructed k indexed copies s1, . . . , sk. Given
an input of the form u1vu2 ∈ L, where u1u2 ∈ ℜ, the gsm g works as follows.
First, by using rules from P , the portion u1 is erased. Rules of the form sa−→as
jump over the letters of v. (The last rule of this portion switches from normal
derivation using states in S to a derivation using only indexed states.) Finally,
by using only indexed states, the word u2 is deleted. As the final states are only
indexed states where the index is not bigger than k, the word u2 to be erased
has length at most k.

As CF is closed under gsm mappings and union it follows that it is closed
under k-deletion with regular languages.

4 K-prefix codes

The notion of prefix codes is related to the operation of catenation. Since k-
catenation is a generalization of catenation, it is natural to introduce new classes
of prefix codes, called k-prefix codes. Their study is the object of this section.

Definition 5 The relation ρk is defined on Σ∗ by:

uρkv ⇔ v = u1xu2, u = u1u2, |u2| ≤ k

The relation ρk is a reflexive and antisymmetric binary relation that is left
compatible and the transitive closure ρ̄k of ρk is a left compatible partial order.

Remark that if k = 0, ρ0 is the usual prefix order.
A nonempty subset S ⊆ Σ∗ such that u, v ∈ S implies u[k]v ⊆ S is called a

k-subsemigroup. Clearly S is a subsemigroup of Σ∗.
A right k-ideal L ⊆ Σ∗ is a nonempty subset of Σ∗ such that u ∈ L implies

u[k]x ⊆ L for all x ∈ Σ∗. This is equivalent to L[k]Σ∗ ⊆ L. Every right k-ideal
is a right ideal (right 0-ideal) and a k-subsemigroup. If L is a right k-ideal for
every k ≥ 0, then, for all u = u1u2 ∈ L and x ∈ Σ∗, u1xu2 ∈ L.

Definition 6 If L ⊆ Σ∗, then:

ρ
[0]
k (L) = L, ρ

[1]
k (L) = {v ∈ Σ∗ | ∃u ∈ L, uρkv}, · · · , ρ

[n]
k (L) = ρ

[1]
k (ρ

[n−1]
k (L)), · · ·

ρk(L) =
⋃

n≥0

ρ
[n]
k (L)
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Clearly ρk(L) = {v ∈ Σ∗|∃u ∈ L, uρ̄kv}. The language ρk(L) is called the
ρk-closure of L.

Proposition 12 If L is a nonempty language, ρk(L) is a right k-ideal and ρk(L)
is the intersection of all the right k-ideals containing L.

Proof. Let u = u1u2 ∈ ρk(L), |u2| ≤ k and x ∈ Σ∗. Then u ∈ ρ
[n]
k (L) for some

n ≥ 0. From uρku1xu2 follows u1xu2 ∈ ρ
[n+1]
k (L) ⊆ ρk(L). Hence ρk(L) is a

right k-ideal.
Let T be a right k-ideal containing L. Suppose that ρk(L) is not contained

in T . Then there is an integer n and a word v ∈ ρ
[n]
k (L) ⊆ ρk(L) such that

v /∈ T . Suppose n minimal with this property. Then n ≥ 1 and ∃u ∈ ρ
[n−1]
k (L)

such that v = u1xu2. Because of the minimality of n, then u ∈ T and, since T
is a right k-ideal, v = u1xu2 ∈ T , a contradiction. Therefore ρk(L) ⊆ T .

Remark that a language L is a right k-ideal if and only if L is its own
ρk-closure, i.e. L = ρk(L).

Let C be a nonempty subset of Σ+. Then C is called (i) a prefix code if
u, ux ∈ C implies x = λ, (ii) an outfix code if u1u2, u1xu2 ∈ C implies x = λ,
(iii) an infix code if u, xuy ∈ C implies x = y = λ (See [2] for example).

Definition 7 A k-prefix code is a nonempty language P ⊆ Σ+ such that u ∈ P
and u[k]x ∩ P 6= ∅ implies x = λ.

Remark that a k-prefix code is also an m-prefix code for m ≤ k and that
prefix codes are the 0-prefix codes. Every outfix code is a k-prefix code for
all k ≥ 0. An infix code is not in general a k-prefix code. For example, let
L = ba+b over Σ = {a, b}. Then L is an infix code, but not a k-prefix code for
k ≥ 1. Indeed, bakb = baak−1b ∈ L, baaak−1b ∈ L, |ak−1b| ≤ k, but a 6= λ. The
language {anbncn|n ≥ 1} is both an infix code and an outfix code and hence a
k-prefix code for all k ≥ 0. The language {a2b, aba, ba2, b2} over Σ = {a, b} is a
finite infix code that is a k-prefix code for k ≥ 0.

Recall that if ρ is a partial order or a quasiorder (reflexive and antisymmetric
relation), then an antichain A is a subset of Σ∗ such that uρv, u, v ∈ A implies
u = v. If L ⊆ Σ+, L 6= ∅, then L is a prefix code iff L is an antichain for the
prefix order, that is ρ0. In general:

Proposition 13 A nonempty language L ⊆ Σ+ is a k-prefix code if and only
if L is a ρk-antichain.

Proof. Immediate from the definitions.

Let Σ with |Σ| ≥ 2, let a ∈ Σ and Y = Σ\{a}. Then Y ∗ak is a k-prefix code
that is not a m-prefix code for all m > k. Hence if Pk(Σ) denotes the family of
the k-prefix codes over Σ, we have the infinite hierarchy:

P0(Σ) ⊃ P1(Σ) ⊃ · · · ⊃ Pk(Σ) ⊃ · · ·
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With every nonempty language L ⊆ Σ+ is associated a k-prefix code Prfk(L)
defined in the following way: Prfk(L) = {u ∈ L|v ∈ L, vρku ⇒ u = v}, i.e.
Prfk(L) is the set of words in L that are minimal with respect to the relation
ρk or ρ̄k. Since λ /∈ L and L 6= ∅, then it is clear that Prfk(L) is a k-prefix code.

Proposition 14 (i) If P is a k-prefix code, then ρk(P ) is a right k-ideal and
Prfk(ρk(P )) = P .

(ii) If L is a right k-ideal, L 6= Σ∗, there exists a unique k-prefix code P ,
namely P =Prfk(L), such that L = ρk(P ).

Proof. (i) The fact that the language ρk(P ) is a right k-ideal follows from Propo-
sition 12.

”Prfk(ρk(P )) ⊆ P”. Let w be a word in Prfk(ρk(P )). If w ∈ P we are done.
Otherwise, w ∈ ρk(P ) which implies the existence of u ∈ P such that uρkw.
This in turn means that there exist words u1, u2, . . . , un in ρk(P ) such that

uρku1, u1ρku2, . . . , unρkw.

(The words ui, 1 ≤ i ≤ n, belong to ρk(P ) because ρk(P ) is a right k-ideal.)
From un ∈ ρk(P ), unρkw, w ∈Prfk(ρk(P )) we deduce that un = w. Going

backwards, one finaly reaches the conclusion that u = w which implies that
w ∈ P .

”P ⊆ Prfk(ρk(P ))”. Let w be a word in P . If w ∈ Prfk(P ) then, as P ⊆
ρk(P ) we have that w ∈ Prfk(ρk(P )).

If w 6∈ Prfk(P ) then w = u1xu2 where u1u2 6= w, u1u2 ∈ P , |u2| ≤ k. But
P is a k-prefix code and therefore this implies u1u2 = w – a contradiction.

(ii) Let P =Prfk(L). Then P is a k-prefix code, P ⊆ L and ρk(P ) ⊆
L. Conversely, if v ∈ L, there exists v1 ∈ L such that v1ρkv. Hence v1 =
r1s1 , |s1 | ≤ k, v = r1x1s1 for some x1 ∈ Σ∗. Similarly, since v1 ∈ L, there
exists v2 ∈ L such that v2ρkv1 and v2 = r2s2, |s2| ≤ k, v1 = r2x2s2 for some
x2 ∈ Σ∗. And so on. Finally, by assuming that at each step xi 6= λ, we have a
descending sequence of vi: |v| > |v1| > · · · > |vi| > · · · with vi = risi, |si| ≤ k,
vi−1 = rixisi and xi 6= λ. Since the descending sequence is finite, we get for
some n: vn = rnsn, |sn| ≤ k vn−1 = rnxnsn and a further decomposition for vn

is no more possible. This implies that vn ∈ P . Hence:

vn ∈ P, vn−1 ∈ ρk(vn), vn−2 ∈ ρk(ρk(vn−1)) ⊆ ρk(vn), · · · ,

v1 ∈ ρk(vn), v ∈ ρk(vn) ⊆ ρk(P ).

Therefore L ⊆ ρk(P ) and L = ρk(P ).
Let now Q be an arbitrary k-prefix code such that L = ρk(Q). According to

(i), ρk(Q) is a right k-ideal and Prfk(ρk(Q)) = Q. Since L = ρk(Q), we deduce
that Prfk(L) = Q. By definition, Prfk(L) = P , therefore we can conclude that
Q = P .
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A well known property of prefix codes is that their catenation is also a prefix
code. The next proposition shows that a similar result holds for k-prefix codes.

Proposition 15 The catenation of k-prefix codes is a k-prefix code.

Proof. Let P, Q be two k-prefix codes and let α ∈ P , β ∈ Q such that there is
a word in αβ[k]v which belongs to PQ. We want to show that v = λ.

We distinguish two cases:

• the word v has been inserted into α or catenated to α. This means
α1vα2β ∈ PQ, |α2β| ≤ k, α1, α2 ∈ Σ∗, α = α1α2;

• the word v has been inserted into β.

Consider the first case (the other one can be treated in a similar fashion).
As α1vα2β is in PQ, it is a catenation xy, where x ∈ P , y ∈ Q. One of the
following situation can occur:

– α′
1

︸︷︷︸

x

α′′
1vα2β

︸ ︷︷ ︸

y

where α1 = α′
1α

′′
1 . As β ∈ Q, y = α′′

1vα2β ∈ Q, |β| ≤ k and

Q is a k-prefix code, it follows that α′′
1vα2 = λ, therefore v = λ.

– α1v1
︸︷︷︸

x

v2α2β
︸ ︷︷ ︸

y

where v = v1v2. From y = v2α2β ∈ Q, β ∈ Q, |β| ≤ k, we

deduce that v2α2 = λ. From α1 ∈ P , x = α1v1 ∈ P , we deduce that v1 = λ.
Consequently, v = λ.

– α1vα′
2

︸ ︷︷ ︸

x

α′′
2β

︸︷︷︸

y

where α2 = α′
2α

′′
2 . As y = α′′

2β ∈ Q, β ∈ Q, we have that

α′′
2 = λ. This implies that α1α

′
2 ∈ P and as α1vα′

2 ∈ P and |α′
2| ≤ |α2β| ≤ k,

we conclude that v = λ.
– α1vα2β1

︸ ︷︷ ︸

x

β2
︸︷︷︸

y

where β1β2 = β. As β1β2 and β2 are in Q, |β2| ≤ k, we have

that β1 = λ. This implies that α1vα2 ∈ P which, together with the fact that
α1α2 ∈ P and |α2| ≤ k implies that v = λ.

In all cases we obtained that v = λ, therefore PQ is a k-prefix code.

The preceding result is to be contrasted with the fact that the insertion of
two prefix codes is not anymore a prefix code. Indeed, consider the prefix codes
L1 = {aib| i > 0} and L2 = {bia| i > 0}. The word aibk+1am+1b belongs to
(ai+mb ← bk+1a) and therefore to L1 ← L2. However, also aibk+1a which is
one of its prefixes, belongs to L1 ← L2 as it is an element of the set aib← bka.
This shows that L1 ← L2 is not a prefix code.
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